Exosome-mediated crosstalk between epithelial cells amplifies the cell injury cascade in CaOx stone formation

Author:

Yang Yuanyuan,Hong Senyuan,Wang Qing,Wang Shaogang,Xun Yang

Abstract

Abstract Background Calcium oxalate (CaOx) stone disease is found worldwide. To explore the role of exosomes as a mediator of intercellular crosstalk during CaOx stone formation, we conducted this study, which may provide a new insight into the treatment and prevention of CaOx stones. Methods Exosomes derived from HK2 cells with (EXO(S)) or without (EXO(C))CaOx crystal stimulation were cocultured with normal tubular epithelial cells and subcapsularly injected into rat kidneys. Then, oxidative stress levels, the MAPK signalling pathway and osteogenic changes were detected via qPCR, Western blotting, immunofluorescence and immunohistochemical staining. In vivo fluorescence imaging and exosome internalization assays showed the absorption and utilization of exosomes. Results EXO(S) increased the reactive oxygen species (ROS) level and activated the expression of BMP2, OPN and OCN via the MAPK/P-38 pathway both in vivo and in vitro. In vivo experiments showed that preinjection of EXO(S) aggravated, while preinjection of EXO(C) ameliorated, these effects. Crystal depositions were significantly increased in SD rats injected with GAM when they were preinjected with EXO(S), and these effects could be reversed after preinjection with EXO(C). Conclusion Our study revealed that exosome-mediated intercellular crosstalk could accelerate the formation of CaOx stones by promoting oxidative stress and the osteogenic cascade in normal tubular epithelial cells. Graphical Abstract HK2 cells stimulated with CaOx crystals released more exosomal miR-223-3p and S100A8 comparing with normal HK2 cells. These exosomes derived from HK2 cells stimulated with CaOx (EXO(S)) could amplify the oxidative stress and osteogenic changes via MAPK/P-38 pathway, which finally led to the formation of Randall’s plaque.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3