Abstract
Abstract
Background
The potential to directly harness photosynthesis to make actuators, biosensors and bioprocessors has been previously demonstrated in the literature. Herein, this capability has been expanded to more advanced systems — Marimo Actuated Rover Systems (MARS) — which are capable of autonomous, solar powered, movement.
Results
We demonstrate this ability is both a practical and viable alternative to conventional mobile platforms for exploration and dynamic environmental monitoring. Prototypes have been successfully tested to measure their speed of travel and ability to automatically bypass obstacles. Further, MARS is electromagnetically silent, thus avoiding the background noise generated by conventional electro/mechanical platforms which reduces instrument sensitivity. The cost of MARS is significantly lower than platforms based on conventional technology.
Conclusions
An autonomous, low-cost, lightweight, compact size, photosynthetically powered rover is reported. The potential for further system enhancements are identified and under development.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献