Author:
Abdelgalil Soad Abubakr,Kaddah Mohamed Mohamed Yousri,Abo-Zaid Gaber Attia
Abstract
Abstract
Background
The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. Using eggshell waste as a renewable energy source has been a hot topic recently. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation.
Results
Drawing on both molecular and morphological characterizations, the most potent ACP-producing B. sonorensis strain ACP2, was identified as a local bacterial strain obtained from the effluent of the paper and pulp industries. The use of consecutive statistical experimental approaches of Plackett–Burman Design (PBD) and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L−1 with an ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h−1. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suitable and favoured setting for improving ACP and organic acids production. Quantitative and qualitative analyses of the produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC–MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of TGA, DSC, SEM, EDS, FTIR, and XRD analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshell particles.
Conclusions
This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase, accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.
Funder
City of Scientific Research and Technological Applications
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Habeebm OA, Yasin FM, Danhassan UA. Characterization and application of chicken eggshell as green adsorbents for removal of H2S from wastewater. J environ sci toxicol food technol. 2014;8(11):7–12.
2. Oliveira DA, Benelli P, Amante ER. A literature review on adding value to solid residues: Eggshells. J Clean Prod. 2013;46:42–7. https://doi.org/10.1016/-j.jclepro.2012.09.045.
3. Waheed M, Yousaf M, Shehzad A, Inam-Ur-Raheem M, Khan MKI, Khan M R, Aadil RM. Channeling eggshell waste to valuable and utilizable products: a comprehensive review. Trends Food Sci Technol. 2020; 78-90. https://doi.org/10.1016/j.tifs.2020.10.009.
4. Laohavisuti N, Boonchom B, Boonmee W, Chaiseeda K, Seesanong S. Simple recycling of biowaste eggshells to various calcium phosphates for specific industries. Sci Rep. 2021;11(1):1–11. https://doi.org/10.1038/s41598-021-94643-1.
5. Ahmed TA, Wu L, Younes M, Hincke M. Biotechnological Applications of Eggshell: Recent Advances. Front bioeng biotechnol. 2021;9:548. https://doi.org/10.3389/-fbioe.2021.675364.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献