Fabricating a robust POSS-PCL nanofiber scaffold for nesting of mesenchymal stem cells: potential application in bone tissue regeneration

Author:

bagheri Leyla,Valizadeh Hasan,Dindar-safa Kazem,Zarghami Nosratollah

Abstract

Abstract Background According to recent studies, electrospun Poly (Ɛ-caprolactone) (PCL) is an absorbing candidate for the formulation of biocompatible scaffolds used in tissue engineering. Tissue engineering is a set of techniques for producing or reconstructing tissue, whose primary purpose is to restore or improve the function of tissues in the human body. Tissue engineering combines the principles of materials and cell transplantation to develop alternative tissues or promote endogenous regeneration. However, this electrospun scaffold, consisting of PCL, has disadvantages such as low cell adhesion, inactivity of the surface, osteoinduction, and acidic destruction of the scaffold that causes inflammation at the implant site, often making it unsuitable implant. This study aimed to improve PCL base cellular scaffolds with the formulation of polyhedral oligomeric silsesquioxane – Polycaprolactone (POSS-PCL) nanofiber scaffolds. The present research focuses on the synthesis of nanofibers for their cell interaction features, and application in bone tissue engineering and regeneration. Results POSS/ PCL Nanocomposites with 2, 5, and 10 wt.% of POSS were synthesized in the Trichloromethane, then POSS – PCL Nanofibers were prepared by the electrospinning technique. In this study, the structures of nanohybrids and nanofibers have been evaluated by FTIR, HNMR, XRD, SEM, EDX, and DSC. The biocompatibility of formulated POSS-PCL scaffolds was detected using mesenchymal stem cells (MSCs). Then several parameters were examined, involving DCFH ROS detection system, gene expression (cell viability/apoptosis, osteogenesis potentiality, and redox molecular homeostasis. Conclusions Based on our results, POSS-PCL nano-scaffolds in comparison with PCL have shown a robust potentiality in homing, growth, and differentiation of stem cells. Graphical Abstract Synthesis of POSS-PCL Nanofibers and their potential application in Bone Regeneration.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3