Author:
Wang Chenglong,Dong Jinlei,Liu Fanxiao,Liu Nan,Li Lianxin
Abstract
Abstract
Background
The long-term nonunion of bone defects is always a difficult problem in orthopaedics treatment. Artificial bone implants made of polymeric materials are expected to solve this problem due to their suitable degradation rate and good biocompatibility. However, the lack of mechanical strength, low osteogenic induction ability and poor hydrophilicity of these synthetic polymeric materials limit their large-scale clinical application.
Results
In this study, we used bioactive glass (BG) (20%, W/W) and polycaprolactone (PCL, 80%, W/W) as raw materials to prepare a bone repair scaffold (PCL@BG20) using fused deposition modelling (FDM) three-dimensional (3D) printing technology. Subsequently, stromal cell-derived factor-1α (SDF-1α) chemokines were loaded into the PCL@BG20 scaffold pores with gelatine methacryloyl (GelMA) hydrogel. The experimental results showed that the prepared scaffold had a porous biomimetic structure mimicking that of cancellous bone, and the compressive strength (44.89 ± 3.45 MPa) of the scaffold was similar to that of cancellous bone. Transwell experiments showed that scaffolds loaded with SDF-1α could promote the recruitment of bone marrow stromal cells (BMSCs). In vivo data showed that treatment with scaffolds containing SDF-1α and BG (PCL@BG-GelMA/SDF-1α) had the best effect on bone defect repair compared to the other groups, with a large amount of new bone and mature collagen forming at the bone defect site. No significant organ toxicity or inflammatory reactions were observed in any of the experimental groups.
Conclusions
The results show that this kind of scaffold containing BG and SDF-1α serves the dual functions of recruiting stem cell migration in vivo and promoting bone repair in situ. We envision that this scaffold may become a new strategy for the clinical treatment of bone defects.
Funder
Jinan Clinical Medical Science and Technology Innovation Plan
Natural Science Foundation of Shandong Province,China
China Scholarship Council
the incubation fund of Shandong Provincial Hospital
Shandong Province Major Scientific and Technical Innovation Project
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献