Abstract
Abstract
Background
The transamidase complex is a molecular machine in the endoplasmic reticulum of eukaryotes that attaches a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins after cleaving a C-terminal propeptide with a defined sequence signal. Its five subunits are very hydrophobic; thus, solubility, heterologous expression and complex reconstruction are difficult. Therefore, theoretical approaches are currently the main source of insight into details of 3D structure and of the catalytic process.
Results
In this work, we generated model 3D structures of the lumenal domain of human GPAA1, the M28-type metallo-peptide-synthetase subunit of the transamidase, including zinc ion and model substrate positions. In comparative molecular dynamics (MD) simulations of M28-type structures and our GPAA1 models, we estimated the metal ion binding energies with evolutionary conserved amino acid residues in the catalytic cleft. We find that canonical zinc binding sites 2 and 3 are strongest binders for Zn1 and, where a second zinc is available, sites 2 and 4 for Zn2. Zinc interaction of site 5 with Zn1 enhances upon substrate binding in structures with only one zinc. Whereas a previously studied glutaminyl cyclase structure, the best known homologue to GPAA1, binds only one zinc ion at the catalytic site, GPAA1 can sterically accommodate two. The M28-type metallopeptidases segregate into two independent branches with regard to one/two zinc ion binding modality in a phylogenetic tree where the GPAA1 family is closer to the joint origin of both groups. For GPAA1 models, MD studies revealed two large loops (flaps) surrounding the active site being involved in an anti-correlated, breathing-like dynamics.
Conclusions
In the light of combined sequence-analytic and phylogenetic arguments as well as 3D structural modelling results, GPAA1 is most likely a single zinc ion metallopeptidase. Two large flaps environ the catalytic site restricting access to large substrates.
Reviewers
This article was reviewed by Thomas Dandekar (MD) and Michael Gromiha.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology
Reference72 articles.
1. Eisenhaber B, Maurer-Stroh S, Novatchkova M, Schneider G, Eisenhaber F. Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins. Bioessays. 2003;25:367–85.
2. Ferguson MAJ, Hart GW, Kinoshita T. Glycosylphosphatidylinositol Anchors. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al., editors. Essentials of Glycobiology. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2017. p. 137–50.
3. Kinoshita T, Fujita M. Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. J Lipid Res. 2016;57:6–24.
4. Kinoshita T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol. 2020;10:190290.
5. Eisenhaber B, Bork P, Eisenhaber F. Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng. 1998;11:1155–61.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献