Differential adaptive RNA editing signals between insects and plants revealed by a new measurement termed haplotype diversity

Author:

Duan YuangeORCID,Xu Ye,Song Fan,Tian Li,Cai Wanzhi,Li HuORCID

Abstract

Abstract Background C-to-U RNA editing in plants is believed to confer its evolutionary adaptiveness by reversing unfavorable DNA mutations. This “restorative hypothesis” has not yet been tested genome-wide. In contrast, A-to-I RNA editing in insects like Drosophila and honeybee is already known to benefit the host by increasing proteomic diversity in a spatial-temporal manner (namely “diversifying hypothesis”). Methods We profiled the RNA editomes of multiple tissues of Arabidopsis thaliana, Drosophila melanogaster, and Apis melifera. We unprecedentedly defined the haplotype diversity (HD) of RNA molecules based on nonsynonymous editing events (recoding sites). Results Signals of adaptation is confirmed in Arabidopsis by observing higher frequencies and levels at nonsynonymous editing sites over synonymous sites. Compared to A-to-I recoding sites in Drosophila, the C-to-U recoding sites in Arabidopsis show significantly lower HD, presumably due to the stronger linkage between C-to-U events. Conclusions C-to-U RNA editing in Arabidopsis is adaptive but it is not designed for diversifying the proteome like A-to-I editing in Drosophila. Instead, C-to-U recoding sites resemble DNA mutations. Our observation supports the restorative hypothesis of plant C-to-U editing which claims that editing is used for fixing unfavorable genomic sequences.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3