Author:
Wu Shuang,Gong Yuzhu,Chen Jianfang,Zhao Xiang,Qing Huimin,Dong Yan,Li Sisi,Li Jianjun,Wang Zhe
Abstract
Abstract
Background
Cancer metabolism is largely altered compared to normal cells. This study aims to explore critical metabolism pathways in colon adenocarcinoma (COAD), and reveal the possible mechanism of their role in cancer progression.
Methods
Expression data and sequencing data of COAD samples were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. The expression profiles between tumor and normal samples were compared to identify differential metabolism pathways through single sample gene set enrichment analysis.
Results
Fatty acid synthesis was identified as a key metabolism pathway in COAD. Based on fatty acid-related lncRNAs, two molecular subtypes (C1 and C2) were defined. C2 subtype with worse prognosis had higher immune infiltration and higher expression of immune checkpoints. Five transcription factors (TFs) including FOS, JUN, HIF1A, STAT3 and STAT2 were highly expressed in C2 subtype. Five fatty acid-related lncRNAs were identified to be biomarkers for predicting COAD prognosis. Finally, further experients showed that knockdown of lncRNA PAXIP1-AS1 decreased the triglyceride content and the fatty acid synthase and acetyl-CoA carboxylase 1 expressions, which suggested that lncRNA PAXIP1-AS1 plays an important role in fatty acid metabolism of COAD.
Conclusions
This study demonstrated that fatty acid synthesis was greatly altered in COAD. Fatty acid-related lncRNAs were speculated to be involved in cancer progression through associating with TFs. The five screened TFs may serve as new drug targets for treating COAD.
Funder
National Natural Science Foundation of China
Medical Science and Technology Innovation Found of The First Hospital Affiliated to Army Medical University
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献