Abstract
Abstract
Until recently, our planet was thought to be home to ~ 107 species, largely belonging to plants and animals. Despite being the most abundant organisms on Earth, the contribution of microbial life to global biodiversity has been greatly underestimated and, in some cases, completely overlooked. Using a compilation of data known as the Global Prokaryotic Census (GPC), it was recently claimed that there are ~ 106 extant bacterial and archaeal taxa [1], an estimate that is orders of magnitude lower than predictions for global microbial biodiversity based on the lognormal model of biodiversity and diversity-abundance scaling laws [2]. Here, we resolve this discrepancy by 1) identifying violations of sampling theory, 2) correcting for the misuse of biodiversity theory, and 3) conducting a reanalysis of the GPC. By doing so, we uncovered greater support for diversity-abundance scaling laws and the lognormal model of biodiversity, which together predict that Earth is home to 1012 or more microbial taxa.
Reviewers
This article was reviewed by Alvaro Sanchez and Sean M. Gibbons.
Funder
National Science Foundation
Army Research Office
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献