Abstract
Abstract
The archaea-bacteria lipid divide is one of the big evolutionary enigmas concerning these two domains of life. In short, bacterial membranes are made of fatty-acid esters whereas archaeal ones contain isoprenoid ethers, though at present we do not have a good understanding on why they evolved differently. The lateral proton transfer mode of energy transduction in membranes posits that protons utilize the solvation layer of the membrane interface as the main route between proton pumps and ATPases, avoiding dissipation of energy to the bulk phase. In this article I present the hypothesis on a proton-transport route through the ester groups of bacterial phospholipids as an explanation for the evolutionary divergence seen between bacteria and archaea.
Reviewers
This article was reviewed by Uri Gophna (Editorial Board member) and Víctor Sojo.
Funder
Ministerio de Ciencia, Innovación y Universidades
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献