Author:
Jiang Lianglei,Fang Ting,Hu Tingting,Feng Jun,Yan Pengfei
Abstract
Abstract
Background
Glioma is a brain tumor with high morbidity and mortality rates. Understanding its molecular pathogenesis can provide targets and therapeutic strategies for glioma treatment. miR-338-3p represses tumor growth in several cancers, including glioma. Thus, this study aimed to identify the regulatory effects of miR-338-3p/phosphoinositide 3-kinase (PI3K)/Akt/thrombospondins 1 (THBS1) on glioma progression.
Materials and methods
Quantitative reverse transcription polymerase chain reaction and western blotting were performed to evaluate the levels of miR-338-3p, THBS1, and PI3K/Akt phosphorylation-related proteins. TargetScan software predicted that miR-338-3p targeted THBS1. This was confirmed by performing the dual-luciferase assay. Wound-healing and cell-counting-kit-8 experiments were performed to analyze how THBS1 and miR-338-3p affect the ability of glioma cells to migrate and proliferate. The effect of miR-338-3p on tumorigenicity in mice was also analyzed.
Results
miR-338-3p downregulation was observed in gliomas, whereas THBS1 showed the opposite trend. By suppressing the PI3K/Akt signaling pathway activation, miR-338-3p overregulated the ability of glioma cells to migrate and proliferate in vitro. Additionally, miR-338-3p inhibited the development of glioma tumors in vivo. Moreover, miR-338-3p directly targeted THBS1. THBS1 overexpression promoted glioma cell migration and proliferation by increasing PI3K/Akt phosphorylation. Nonetheless, miR-338-3p overregulation alleviated the effects of THBS1 overexpression.
Conclusion
The miR-338-3p/PI3K/Akt/THBS1 regulatory axis can modulate the progression of glioma cell proliferation and migration; thus, it can be considered a therapeutic biomarker.
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, et al. Glioma Nat Reviews Disease Primers. 2015;1(1):1–18.
2. Juratli TA, Qin N, Cahill DP, Filbin MG. Molecular pathogenesis and therapeutic implications in pediatric high-grade gliomas. Pharmacol Ther. 2018;182:70–9.
3. Wu Y, Qian Z. Long non-coding RNAs (lncRNAs) and microRNAs regulatory pathways in the tumorigenesis and pathogenesis of glioma. Discov Med. 2019;28(153):129–38.
4. Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15(1):1–6.
5. Pu M, Chen J, Tao Z, Miao L, Qi X, Wang Y, et al. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci. 2019;76(3):441–51.