Spinal apolipoprotein E is involved in inflammatory pain via regulating lipid metabolism and glial activation in the spinal dorsal horn

Author:

Liu Siyi,Yang Shuting,Zhu Xuan,Li Xiang,Zhang Xi,Zhou Xiaoqiong,Cheng Hong,Huo Fu-Quan,Mao Qingxiang,Liang Lingli

Abstract

Abstract Introduction Inflammation and nerve injury promote astrocyte activation, which regulates the development and resolution of pain, in the spinal dorsal horn. APOE regulates lipid metabolism and is predominantly expressed in the astrocytes. However, the effect of astrocytic APOE and lipid metabolism on spinal cellular function is unclear. This study aimed to investigate the effect of spinal Apoe on spinal cellular functions using the complete Freund's adjuvant (CFA)-induced inflammatory pain mouse model. Methods After intraplantar injection of CFA, we assessed pain behaviors in C57BL6 and Apoe knockout (Apoe−/−) mice using von Frey and Hargreaves’ tests and analyzed dorsal horn samples (L4-5) using western blotting, immunofluorescence, quantitative real-time polymerase chain reaction, and RNA sequencing. Results The Apoe levels were markedly upregulated at 2 h and on days 1 and 3 post-CFA treatment. Apoe was exclusively expressed in the astrocytes. Apoe−/− mice exhibited decreased pain on day 1, but not at 2 h, post-CFA treatment. Apoe−/− mice also showed decreased spinal neuron excitability and paw edema on day 1 post-CFA treatment. Global transcriptomic analysis of the dorsal horn on day 1 post-CFA treatment revealed that the differentially expressed mRNAs in Apoe−/− mice were associated with lipid metabolism and the immune system. Astrocyte activation was impaired in Apoe−/− mice on day 1 post-CFA treatment. The intrathecal injection of Apoe antisense oligonucleotide mitigated CFA-induced pain hypersensitivity. Conclusions Apoe deficiency altered lipid metabolism in astrocytes, exerting regulatory effects on immune response, astrocyte activation, and neuronal activity and consequently disrupting the maintenance of inflammatory pain after peripheral inflammation. Targeting APOE is a potential anti-nociception and anti-inflammatory strategy.

Funder

Xi’an Jiaotong University Innovation and entrepreneurship Program for College Students, China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3