Investigation and analysis of groundwater-derived damage to the Shahe ancient bridge site in Xi’an, China

Author:

Cao Jing,Mai Bingjie,Chen Hua,Li Yuhu,Wang Juanli

Abstract

AbstractEarthen cultural ruins and their subsurface environments act as carriers or support for aboveground cultural heritage artefacts, and groundwater has been identified as the most important factor accelerating the destruction of ruins. In this paper, a wooden structure on the site of the Xianyang Shahe ancient bridge is taken as the research object. Through geotechnical surveys and site sample analyses, the relationship between the environment and cause of damage at the site is explored. Fluctuations in groundwater level are found to affect the movement of water and salt, thereby accelerating deterioration and allowing microbes and other soil inhabitants and plants to erode the ruins. Furthermore, strong correlations are revealed between the stratigraphy of the area and both ruin status and sample analysis results. Geotechnical investigation data are used to predict the effects of various damaging factors on long-term preservation and the underlying mechanisms and to propose feasible, long-term countermeasures for preservation studies.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Fundamental Research Funds for Central Universities of the Central South University

Publisher

Springer Science and Business Media LLC

Subject

Archaeology,Archaeology,Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3