Reconstruction of historical hygrometric time series for the application of the European standard EN 15757:2010 and its comparison with current time series

Author:

Díaz-Arellano Ignacio,Zarzo Manuel,Aransay Cristina,González de Aspuru Hidalgo Sara,Laborda Jaime,Perles Angel

Abstract

AbstractThe quality and quantity of thermo-hygrometric data are essential to carry out an appropriate assessment of the microclimate from a preventive conservation standpoint in those spaces where the artefacts to be preserved are located. These analyses are fundamental for long-term preventive conservation plan to assess chemical, biological or fracture risks. However, many small and medium-sized museums as well as heritage buildings have only a limited amount of historical data, with various problems that hinder the evaluation of microclimatic conditions. Two of the most common problems are short monitoring time periods, usually less than one year, and low sampling rates of measurements. In many of these situations, guidelines such as the European standard EN 15757:2010 cannot be applied because they require a monitoring period of at least 13 months and a minimum sampling frequency of one measurement per hour. In addition to these issues, there are other drawbacks such as missing values or lack of regularity in data collection. This paper proposes a procedure for the reconstruction of historical thermo-hygrometric data using multivariate statistical methods. The methodology allows the arrangement of long historical series of sufficient quality, enabling museums to restore their datasets for further analysis regarding the application of guidelines for preventive conservation. The methodology has been validated on the basis of real data. The application of the European standard EN 15757:2010 is presented as a practical example of the procedure using historical data collected at a partner museum of the H2020 CollectionCare project, together with data currently being collected for some months by a set of wireless sensor nodes.

Funder

H2020 Industrial Leadership

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

Reference55 articles.

1. Camuffo D. Microclimate for cultural heritage—conservation, restoration and maintenance of indoor and outdoor monuments. 2nd ed. Amsterdam: Elsevier; 2013.

2. Pavlogeorgatos G. Environmental parameters in museums. Build Environ. 2003;38:1457–62.

3. UNI 10829. Works of art of historical importance. Ambient conditions for the conservation. Measurement and Analysis. 1999.

4. Culturali MPIBELA. Atto di Indirizzo Sui Criteri Tecnico-Scientifici e Sugli Standard di Funzionamento e Sviluppo dei Musei. Rome, Italy. 2001.

5. Staniforth S, Hayes B, Bullock L. Appropriate technologies for relative humidity control for museum collections housed in historic buildings. Stud Conserv. 1994;39:123–8.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3