The use of ground glass in red glazes: structural 3D imaging and mechanical behaviour using optical coherence tomography and nanoindentation

Author:

Almasian MitraORCID,Tiennot Mathilde,Fiske Lionel D.,Hermens Erma

Abstract

AbstractIn this study we investigate the impact of the addition of colourless glass particles to red glazes, as seen in many 15th-17th-century easel paintings. With the use of reconstructions, we examined the influence of the paint preparation process on the morphological and mechanical properties of the paint film. Three sets of reconstructions were made, a control without ground glass, reconstructions with coarse or fine ground glass mixed in, and reconstructions where fine ground glass was ground jointly with the pigment oil mixture. The latter gave the desired consistency and colour based on visual inspection. The dried reconstructions were non-invasively imaged using optical coherence tomography (OCT). A data-analysis pipeline was developed for both the segmentation of the OCT images and the measurement of the size and spatial distributions of the glass particles within the glaze layer. Moreover, we used a nanoindentation protocol to measure the viscoelastic properties of the dried red glaze film. The OCT results show an expected decrease in median particle size with longer grinding-time, for which the additional grinding with pigment/oil resulted in a more narrow size distribution and a homogenous spatial distribution of the glass particles. The nanoindentation results indicate that the addition of glass particles increases the elastic and viscous moduli of the red glaze layers. The homogeneous size distribution, obtained by grinding the oil, pigment, and glass together, induces higher elastic and viscous moduli. Our imaging and analyses approach, combining OCT and nanoindentation, provides a non-invasive and quantitative investigation of glass particles in (semi-) transparent paint layers, and their effect on the mechanical properties of the glaze. The results of this study contribute to a better understanding of the artists’ addition of ground glass in paint layers.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation

Reference23 articles.

1. Dietz S. Malen mit Glas–Studien zur Maltechnik von Hans Holbein d.Ä. PhD thesis, Kölner Schriften zur Geistes- und Gesellschaftswissenschaftlichen Forschung, 2016.

2. Spring M. Colourless Powdered Glass as an Additive in Fifteenth-and Sixteenth-Century European Paintings. Natl Gall Tech Bull. 2012;33:4–26.

3. Seccaroni C, Moioli P, Borgia I, Brunetti B, Sgamellotti A. The painting technique of Pietro Vannucci, called il Perugino. In: Brunetti BG, Seccaroni C, Sgamellotti A, editors. Proc LabS Tech Work Quad di Kermes. Florence; 2004.

4. Spring M. Perugino’s painting materials: analysis and context within sixteenth century easel paintings. In: Brunetti BG, Seccaroni C, Sgamellotti A, editors. The painting technique of Pietro Vannucci, called il Perugino. Perugia: Proc LabS Tech Work Quad di Kermes; 2004.

5. Spring M. Raphael’s materials: Some new discoveries and their context within early sixteenth-century painting. In: Roy A, Spring M, editors. Raphael’s painting technique: working practices before Rome. London: Proc EU-ARTECH Work Quad di Kermes; 2004.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3