A virtual reconstruction method for corridor gable buildings based on the knowledge of structural dynamics: taking Leiyin Cave as an example

Author:

Zhang Ruiling,Dong Youqiang,Hou MiaoLe,Jang Lili

Abstract

AbstractVirtual reconstruction of ancient buildings often has incomplete records of the original design and construction details, and can only be reconstructed based on limited data, drawings and photography, which is different from the actual conditions. The unique overhanging structure of the corridor gable building makes it vulnerable to damage in extreme weather conditions. In order to ensure that the virtual reconstruction results can not only reproduce the original appearance of history, but also ensure that the reconstructed model maintains structural stability in the long term. This paper proposes a reconstruction method of the original appearance of the corridor gable building remains based on structural dynamics analysis. This method comprehensively uses three-dimensional reconstruction, structural engineering, dynamic analysis, and computer simulation technology to ensure the structural accuracy and historical authenticity of the virtually reconstructed corridor gable building. First, through data collection and analysis, combined with ancient architectural construction techniques, a preliminary three-dimensional model was created, which included all structural elements and details. Several groups of reconstruction schemes are determined based on material properties. Then, using finite element analysis software, perform dynamic analysis on the three-dimensional model. Evaluate the stability of the reconstructed structure and optimize the material selection plan to ensure the feasibility and accuracy of the virtual reconstruction. Taking the virtual reconstruction of the eaves in front of Leiyin Cave as an example, it shows that this method is effective and feasible to achieve the virtual reconstruction of corridor gable buildings. It provides new ideas for virtual reconstruction of ancient buildings and has important practical application value.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3