Mechanical and moisture-related properties of selected dried tempera paints

Author:

Poznańska Katarzyna,Hola Aleksandra,Kozłowski Roman,Strojecki Marcin,Bratasz Łukasz

Abstract

AbstractMechanical properties—modulus of elasticity and strain at break, water vapour sorption, and hygroscopic expansion of selected egg tempera and distemper paints were determined as a function of relative humidity (RH) filling in this way a critical gap in the knowledge required for the analysis of fracturing processes in paintings. The experimental work was made possible by the preparation of several tempera paints, mimicking the historical materials, in the form of large specimens. Lead white, azurite, and yellow ochre were selected as pigments, and egg yolk and rabbit skin glue as binding media. The water vapour sorption and the moisture-related swelling of the paints were dominated by the proteinaceous components of the binders. The linear hygroscopic expansion coefficient of the dried egg yolk binder was approximately 1 × 10−4 per 1% RH, several times less than the coefficient of the collagen glue (4 × 10−4 per 1% RH). The moduli of elasticity of egg tempera paints at the RH mid-range were comparable to the moduli of aged oil paints, whilst the modulus of elasticity of the distemper paint was close to values measured for animal glue-based grounds. The paints experienced the transition from brittle to ductile states on increasing RH. The egg tempera paints were found to be more brittle than the distemper paint, gessoes, and, generally, aged oil paints. The observations modify a frequently used laminar model of panel paintings in which the mismatch in the response of glue-based ground layer and wood substrate to variations in RH has been identified as the worst-case condition for the fracturing of the entire pictorial layer. This study demonstrated that tempera could be more brittle than the ground layer and in consequence more vulnerable to cracking.

Publisher

Springer Science and Business Media LLC

Reference38 articles.

1. Davies M, Rawlins I. The war-time storage in Wales of pictures from the National Gallery, London. Trans Hon Soc Cymmrodorion. 1945;179–93.

2. Mecklenburg MF, Tumosa CS, Erhardt D. Structural response of painted wood surfaces to changes in ambient relative humidity. In: Dorge V, Howlett FC, editors. Painted wood: history and conservation. Los Angeles: The Getty Conservation Institute; 1998. p. 464–83.

3. Mecklenburg MF. Determining the acceptable ranges of RH and T in museums and galleries, part 1. A report of the Museum Conservation Institute, the Smithsonian Institution; 2011. http://www.si.edu/mci/english/learn_more/publications/reports.html. Accessed 28 Jan 2023.

4. Mecklenburg MF, Tumosa CS, Erhardt D. New environmental guidelines at the Smithsonian Institution. Papyrus (Int Assoc Mus Facil Adm). 2004;5(3):16–7.

5. Hagan EWS. Thermo-mechanical properties of white oil and acrylic artist paints. Prog Org Coat. 2017;104(3365):28–33.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3