Author:
Meng Qingxia,Li Xianchao,Geng Junqiang,Liu Chenshu,Ben Songbin
Abstract
AbstractEfficient removal of mold stains becomes an important research topic for paper conservation. In this study, a cleaning scheme based on the combination of bioenzymes and biosurfactants was explored. Morphological and molecular biology identifications were first jointly applied to identify the dominant strains sampled from five ancient books that are stored in the same environment. Cellulolytic experiments were then conducted to evaluate the cellulose degradation ability of the strains according to the cellulolytic digestive index. Finally, paper Mockups for the ancient books were constructed to investigate the most effective combination of bioenzymes and biosurfactants in removing mold stains as well as its effect on the paper’s physical properties. The result concluded that the combination of 3% papain, 7% of sophorolipid or 7% of betaine, and distilled water, achieved optimal stain removal effect with over 50% cleaning rate at 35 °C, after 30 min of infiltration. The maximum color difference of the paper material after cleaning was around 0.60, pH was between 7.45 and 7.79, and no significant changes in tensile strength were observed. At the same time, Sophorolipid and Betaine both have superior deacidification, anti-acidification, anti-aging, and reinforcement capabilities, which can provide extra support to the fibrous structure in addition to cleaning the paper materials. The microbial contamination cleaning agent proposed in this study shows promising application prospects in conserving mold-contaminated paper artifacts.
Funder
Liaoning Province Economic and Social Development Research Project
Liaoning Provincial Social Science Planning Fund Project
Science and technology plan project of Liaoning Provincial Archives Bureau
Publisher
Springer Science and Business Media LLC
Subject
Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy