Virtual cleaning of works of art using a deep generative network: spectral reflectance estimation

Author:

Maali Amiri Morteza,Messinger David W.

Abstract

AbstractGenerally applied to a painting for protection purposes, a varnish layer becomes yellow over time, making the painting undergo an appearance change. Upon this change, the conservators start a process that entails removing the old layer of varnish and applying a new one. As widely discussed in the literature, helping the conservators through supplying them with the probable outcome of the varnish removal can be of great value to them, aiding in the decision making process regarding varnish removal. This help can be realized through virtual cleaning, which in simple terms, refers to simulation of the cleaning process outcome. There have been different approaches devised to tackle the problem of virtual cleaning, each of which tries to develop a method that virtually cleans the artwork in a more accurate manner. Although successful in some senses, the majority of them do not possess a high level of accuracy. Prior approaches suffer from a range of shortcomings such as a reliance on identifying locations of specific colors on the painting, the need to access a large set of training data, or their lack of applicability to a wide range of paintings. In this work, we develop a Deep Generative Network to virtually clean the artwork. Using this method, only a small area of the painting needs to be physically cleaned prior to virtual cleaning. Using the cleaned and uncleaned versions of this small area, the entire unvarnished painting can be estimated. It should be noted that this estimation is performed in the spectral reflectance domain and herein it is applied to hyperspectral imagery of the work. The model is first applied to a Macbeth ColorChecker target (as a proof of concept) and then to real data of a small impressionist panel by Georges Seurat (known as ‘Haymakers at Montfermeil’ or just ‘Haymakers’). The Macbeth ColorChecker is simulated in both varnished and unvarnished forms, but in the case of the ‘Haymakers’, we have real hyperspectral imagery belonging to both states. The results of applying the Deep Generative Network show that the proposed method has done a better job virtually cleaning the artwork compared to a physics-based method in the literature. The results are presented through visualization in the sRGB color space and also by computing Euclidean distance and spectral angle (calculated in the spectral reflectance domain) between the virtually cleaned artwork and the physically cleaned one. The ultimate goal of our virtual cleaning algorithm is to enable pigment mapping and identification after virtual cleaning of the artwork in a more accurate manner, even before the process of physical cleaning.

Funder

Xerox chair in Rochester Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

Reference25 articles.

1. Constantin S. The Barbizon painters: a guide to their suppliers. Stud Conserv. 2001;46:49–67.

2. Callen A. The unvarnished truth: mattness’, primitivism’ and modernity in French painting c. 1870–1907. Burlingt Mag. 1994;136:738–46.

3. Bruce-Gardner R, Hedley G, Villers C. Impressionist and post-impressionist masterpieces: the Courtauld Collection. New Haven, Conn.: Yale University Press; 1987.

4. Watson M, Burnstock A. An evaluation of color change in nineteenth-century grounds on canvas upon varnishing and varnish removal. In: New insights into the cleaning of paintings: proceedings from the cleaning 2010 international conference, Universidad Politecnica de Valencia and Museum Conservation Institute. Smithsonian Institution; 2013.

5. Berns RS, de la Rie ER. The effect of the refractive index of a varnish on the appearance of oil paintings. Stud Conserv. 2003;48:251–62.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3