The light aging behavior of daylight fluorescent paints: a colorimetric, photographic, Raman spectroscopic and fluorescence spectroscopic study

Author:

Reiß Lukas,Prestel Thomas,Giering Sarah

Abstract

AbstractDaylight fluorescent pigments with their intense color effects have attracted great interest among artists since their market launch in the mid-twentieth century. Since then they have been widely used in the visual arts. The pigments are mainly compositions of organic fluorescent dyes and optical brighteners diluted in an insoluble resin. Due to the susceptibility of the dyes to visible and UV radiation, their lightfastness is comparatively low. This paper presents a comprehensive study of the color and fluorescence changes of daylight fluorescent paints upon exposure in visible light and ultraviolet radiation conducted on mock-ups of commercial daylight fluorescent pigments. The different aging characteristics of the pigments depend on the color tone. They were recorded by means of photographic and colorimetric documentation. In addition, Raman spectroscopy was used to identify the main dyes of the various pigments, even in the complex system of paints, consisting of primer, binder, resin and dyes, and to determine their degradation during aging. Fluorescence spectroscopy revealed that the change in fluorescent color may not only be due to the decrease in dye concentration, but also to the transformation of the original dyes into other fluorescent compounds during light aging. Finally, this paper provides recommendations for the presentation of artworks containing daylight fluorescent pigments.

Funder

European Social Fund

Hochschule für Bildende Künste Dresden

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

Reference32 articles.

1. Switzer JL, Switzer RC, inventors; Switzer JL, Switzer RC, assignee. Daylight fluorescent pigment compositions. USA patent 2498592. 1950 February 21.

2. Johnston-Feller R. Color science in the examination of museum objects. Los Angeles: The Getty Conservation Institute; 2001. p. 205–18.

3. Deiss A. Das Gegenteil von zurückhaltend: Tagesleuchtfarben in der Kunst. In: Deiss A, Jahn A, Schimpf S, editors. Neon – Vom Leuchten der Kunst. Köln: Wienand Verlag; 2013. p. 10–25.

4. Alvarez Martín A, De Winter S, Nuyts G, Hermans J, Janssens K, Van der Snickt G. Multi-modal approach for the characterization of resin carriers in Daylight Fluorescent Pigments. Microchem J. 2020;159: 105340.

5. Christie RM. Fluorescent dyes. Rev Prog Coloration. 1993;23:1–18.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3