Geotechnical modelling of the climate change impact on world heritage properties in Alexandria, Egypt

Author:

Hemeda SayedORCID

Abstract

AbstractAlexandria is one of the Mediterranean UNESCO World Heritage sites at risk from coastal flooding and erosion due to sea-level rise. The city’s position on the Mediterranean coast means it is especially vulnerable to rising sea levels. Alexandria is one of UNESCO sites in Egypt at risk from flooding. All the archaeological sites in the northern coast of Egypt are also said to be at risk from coastal erosion. The flood risk in Alexandria is expected to reach a tipping point by 2050. This research presents the numerical analysis of geotechnical and structural damage mechanism of Catacombs of Kom El-Shoqafa and El-Shatbi Necropolis; the sites have the lowest topography in Alexandria induced by the sea level rise and heavy rain due to the Climate Change, based on Finite Element PLAXIS Code. The purpose of the study was to investigate the behavior fully-saturated soft rock/ hard soil subjected to ground water intrusions. The main objective of this study is to very accurately record and analyze geotechnical problems and induced structural failure mechanisms that have been observed and accounted for in field, experimental and Numerical studies. The land area is also vulnerable to coastal flooding. It is widely expected that the numerical analysis of such geotechnical problems will contribute to the preservation of cultural heritage. The present research presents an attempt and experimental study to design a PLAXIS 2D FE model to simulate hard soil/hard rock problems, distortion and stress analysis of the complex structure of the catacombs. Plastic modeling or Mohr—Coulomb model was used in advanced soils during various stages of numerical analysis. Results are recorded and discussed regarding stress and volumetric behavior of soil/rocks. Groundwater infiltration into pores or fissures of rock and soil has a great influence on the engineering mechanical properties of rocks and soils.

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation

Reference24 articles.

1. UNISDR-CRED Economic losses, poverty & disasters: 1998–2017 United Nations Office for Disaster Risk Reduction (UNISDR), Centre for Research on the Epidemiology of Disasters (CRED), Geneva, Switzerland and Brussels, Belgium; 2018. Available at https://www.unisdr.org/files/61119_credeconomiclosses.pdf.

2. Martínez-Austria P, Jano-Pérez JA. Climate change and extreme temperature trends in the Baja California Peninsula, Mexico. Air Soil Water Res. 2021;14:1–11.

3. Lizhu M, Zhonghua Z, Yue T. The Influence of Groundwater Level Rise on Bearing Capacity of Sand Foundation. IOP Conf Ser Earth Environ Sci. 2019;304:022089. https://doi.org/10.1088/1755-1315/304/2/022089.

4. Xie L. Experimental study on the influence of water level rise and fall on bearing capacity and settlement of coarse sand foundation. J Eng Geol. 2013;21:871–7.

5. https://www.bentley.com/en/products/product-line/geotechnical-engineering-software/plaxis-2d.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3