DGPCD: a benchmark for typical official-style Dougong in ancient Chinese wooden architecture

Author:

Zhou Caochenyu,Dong Youqiang,Hou Miaole

Abstract

AbstractDougong, a distinctive component of ancient Chinese wooden architecture, holds significant importance for the preservation and restoration of such structures. In particular, the northern official-style buildings represent the pinnacle of ancient Chinese construction techniques. In the realm of cultural heritage preservation, the application of deep learning has gradually expanded, demonstrating remarkable effectiveness. Point cloud serving as a crucial source for Dougong, encapsulates various information, enabling support for tasks like Dougong point cloud classification and completion. The quality of Dougong datasets directly impacts the outcomes of DNNs (deep neural networks), as they serve as the foundational data support for these models. The typical official-style Dougong, with its standardized and repetitive structural patterns, is highly suitable for training DNNs to accurately recognize and analyze these complex architectural elements. However, due to the inherent characteristics of Dougong, such as coplanarity and occlusion, acquiring point cloud data is challenging, resulting in poor data quality and organizational difficulties. To address this issue, our study adopts a multi-source data fusion approach to tackle the challenges of insufficient data quantity and poor data quality. Further, through data augmentation, we enhance the dataset’s volume and generalize its characteristics. This effort culminates in the creation of the typical official-style Dougong Point Cloud Dataset (DG Dataset), poised to support deep learning tasks related to Dougong scenarios.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3