Abstract
AbstractUsing data from simulated and actual case studies, this paper assesses the accuracy and precision of Bayesian estimates for the constructional date of medieval masonry buildings, generated from the radiocarbon evidence returned by different assemblages of wood-charcoal mortar-entrapped relict limekiln fuel (MERLF). The results from two theoretical studies demonstrate how Bayesian model specifications can be varied to generate a chronologically continuous spectrum of distributions from radiocarbon datasets subject Inbuilt Age (IA). Further analysis suggests that the potential for these distributions to contain the date of the constructional event depends largely upon the accuracy of the latest radiocarbon determination within each dataset, while precision is predicated on dataset age range, dataset size and model specification. These theoretical studies inform revised approaches to the radiocarbon evidence emerging from six culturally important Scottish medieval masonry buildings, each of which is associated with a wood-charcoal MERLF assemblage of different botanical character. The Bayesian estimates generated from these radiocarbon datasets are remarkably consistent with the historical and archaeological evidence currently associated with these sites, while age range distributions suggest the IA of each MERLF assemblage has been constrained by the taxa-specific and environmentally contingent lifespans and post-mortem durabilities of the limekiln fuel source. These studies provide further evidence that Bayesian techniques can generate consistently accurate chronological estimates for the construction of medieval masonry buildings from MERLF radiocarbon data, whatever the ecological provenance of the limekiln fuel source. Estimate precision is contingent upon source ecology and craft technique but can be increased by a more informed approach to materials analysis and interpretation.
Publisher
Springer Science and Business Media LLC
Subject
Archaeology,Archaeology,Conservation
Reference76 articles.
1. Gourdin W, Kingery W. The beginnings of pyrotechnology: Neolithic and Egyptian lime plaster. J Field Archaeol. 1975;2:133–50.
2. Kingery W, Vandiver P, Prickett M. The beginnings of pyrotechnology, part II: production and use of lime and gypsum plaster in the pre-pottery Neolithic near-east. J Field Archaeol. 1988;15(2):219–34.
3. Friesem D, Abadi I, Shaham D, Grosman L. Lime plaster cover of the dead 12000 years ago—new evidence for the origins of lime plaster technology. Evol Hum Sci. 2019;1:e9.
4. Carò F, Riccardi M, Mazzilli SM. Characterization of plasters and mortars as a tool in archaeological studies: the case of Lardirago Castle in Pavia, northern Italy. Archaeometry. 2008;50:85–100.
5. Elsen J, Mertens G, Van Balen K. Raw materials used in ancient mortars from the Cathedral of Notre-Dame in Tournai (Belgium). Eur J Mineral. 2011;23:871–82.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献