Understanding and optimizing Evolon® CR for varnish removal from oil paintings

Author:

Baij Lambert,Liu Chun,Buijs Jesse,Alvarez Martin Alba,Westert Dorien,Raven Laura,Geels Norbert,Noble Petria,Sprakel Joris,Keune KatrienORCID

Abstract

AbstractEvolon$$^\circledR$$ ® CR is increasingly used in paintings conservation for varnish removal from oil paintings. Its key benefits over traditional cotton swabs are limiting solvent exposure and reducing mechanical action on the paint surface. However, this non-woven microfilament textile was not originally engineered for conservation use and little is known about its chemical stability towards organic solvents. Moreover, the physical processes of solvent loading and release by Evolon$$^\circledR$$ ® CR, as well as solvent retention inside paint after cleaning, have not been studied. These three topics were investigated using a multi-analytical approach, aiming for an improved understanding and optimized use of Evolon$$^\circledR$$ ® CR for varnish removal. Our results show that the tissue is generally chemically and physically stable to organic solvents when exposed on timescales that are typical in conservation practice. However, a pre-treatment step of Evolon$$^\circledR$$ ® CR is necessary to avoid the release of unwanted saturated fatty acids into the paint during varnish removal. We show that the primary mechanism of solvent uptake by the fibers is adsorption rather than absorption and that the dominant factor dictating the maximum solvent load is the volume of the voids between the fibers. Finally, solvent induced dynamics after application of solvent-loaded Evolon$$^\circledR$$ ® CR within the paint film was monitored using portable laser speckle imaging on model paints. A method to quantify solvent-retention in real-time was developed and revealed that the presence of varnish on paintings results in lower dynamics of solvents within the paint in comparison to unvarnished paint. Comparing various solvents, it was found that cleaning with acetone resulted in a roughly six-fold increase in dynamics compared to ethanol and isopropanol.

Funder

nederlandse organisatie voor wetenschappelijk onderzoek

akzonobel

bennink foundation

stichting zabawas

The Migelien Gerritzen Fellowship

TKI-E&I

Familie Staal Fonds

Publisher

Springer Science and Business Media LLC

Subject

Archaeology,Archaeology,Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3