State of conservation analysis of the Elliptical Wall of the Temple of the Sun in Ingapirca (Ecuador) and its relationship with climate conditions

Author:

Aguirre Ullauri María del Cisne,Torres-Quezada Jefferson,López Suscal Michelle

Abstract

AbstractThe conservation of cultural heritage in Ecuador is an increasingly complex task, evident for several centuries in the Ingapirca Archaeological Complex and particularly in the Elliptical Wall of the Temple of the Sun. Given the weathering, intensified by its geographic location, this monument presents a high level of deterioration despite much previous research and the execution of conservation actions. Therefore, this research proposes a comprehensive study that relates the deterioration processes of the Elliptical Wall and the climate conditions where it is located. The method of wall stratigraphic reading has been used, complemented by an analysis of condensation and solar gain. The results show that the building comprises nine phases, four in common for all the orientations from 700 AD, which define the property's authenticity, and five characterized by diverse interventions. At least 38 construction, reconstruction, and maintenance activities have been identified in 9 historical-construction phases and ten degradation phases. In addition, all the orientations of the Elliptical Wall reach the dew point at night, given the relative humidity and air temperature levels in the study region. The southern orientation stands out as the surface with the highest frequency of condensation, the lowest solar gain, and the highest percentage of affections. Thus, this study supports that the deterioration of this building has a high correlation with its condensation capacity, which intensifies or reduces depending on the levels of solar capture; the monument will continue to be transformed and even eliminate historic strata due to the irreversible deterioration in different sectors and the current difficulties in mitigating it.

Funder

Universidad Católica de Cuenca

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3