Facilitating the conservation treatment of Eva Hesse’s Addendum through practice-based research, including a comparative evaluation of novel cleaning systems

Author:

Bartoletti Angelica,Maor Tamar,Chelazzi David,Bonelli Nicole,Baglioni Piero,Angelova Lora V.,Ormsby Bronwyn A.

Abstract

AbstractThis paper describes the methodology and practice-based research underpinning the development of a successful cleaning strategy for Eva Hesse’s sculpture Addendum (1967, Tate Collection T02394). Research strands included: technical and art historical investigations to determine the materials and construction of the work of art and to define the aims of the conservation treatment; the production, soiling and accelerated ageing of mock-up samples using contemporary equivalent materials; and the systematic, iterative evaluation of soiling removal systems, which were further refined for appropriate use on the work of art. The comparative cleaning system evaluation was employed to determine options which offered optimal soiling removal efficacy and posed minimal risk to the work of art. Newly developed Nanorestore Gel® Peggy series (i.e. polyvinyl alcohol (PVA) and polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP)-based hydrogels), designed for the cleaning of modern and contemporary art, were evaluated with a range of other gels, emulsifiers and cosmetic sponges and assessed through a combination of empirical observation, microscopy and spectroscopic techniques. Promising options, combined with tailored aqueous phases derived from trials on mock-up samples, were then evaluated on discreet areas of the sculpture. After extensive testing, the top papier mâché section of Addendum was surface cleaned using an aqueous solution applied with cosmetic sponges, and the ropes were surface cleaned using a modified version of Nanorestore Gel® Peggy 5 (PVA/PVP) loaded with a tailored aqueous solution. The optimisation of this hydrogel, combined with the extensive supporting research, enabled the successful, low-risk, conservation treatment of Addendum for the first time since acquisition.

Funder

H2020 European Institute of Innovation and Technology

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation

Reference47 articles.

1. Murray A, Contreras de Berenfeld C, Chang SYS, Jablonski E, Klein T, Riggs MC, Robertson EC, Tse WMA. The condition and cleaning of acrylic emulsion paintings. In: Vandiver PB, Goodway M, Mass JL, editors. Proceedings from Symposium II: materials issues in art and archaeology VI, Boston, 26-30 November 2001. Boston: Material Research Society; 2002. pp. 1–8.

2. Jablonski E, Learner T, Hayes J, Golden M. Conservation concerns for acrylic emulsion paints. Stud Conserv. 2003;48:3–12.

3. Learner T, Smithen P, Krueger J, Schilling M, editors. Modern paints uncovered: proceedings from the modern paints uncovered symposium, London (UK), 16-19 May 2006. Los Angeles: Getty Conservation Institute; 2007.

4. Chiantore O, Rava A, editors. Conserving contemporary art: issues, methods, materials, and research. Los Angeles: The Getty Conservation Institute; 2012.

5. Lippard LR. Eva Hesse. New York: New York University Press; 1976.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3