The examination of Van Gogh’s chrome yellow pigments in ‘Field with Irises near Arles’ using quantitative SEM–WDX

Author:

Geldof MurielORCID,van der Werf Inez Dorothé,Haswell Ralph

Abstract

AbstractIn this paper we present the results of quantitative measurements on the pigment chrome yellow (PbCr1−xSxO4 with 0 ≤ x ≤ 0.8) using scanning electron microscopy-wavelength dispersive X-ray analysis (SEM–WDX). Traditionally, Optical Microscopy (OM) in combination with scanning electron microscopy-energy dispersive X-ray analysis (SEM–EDX) is used for the identification of many pigments in paint cross-sections based on their particle characteristics and elemental composition. However, in the case of chrome yellow, the lead (Pb) and sulphur (S) peaks overlap, which makes quantitative analysis unreliable. SEM–WDX does not suffer from this problem and we have demonstrated that this technique can distinguish different types of chrome yellow based on the quantification of the sulphur-content of the pigment. This identification can be performed on paint cross-sections, allowing for distinction between chrome yellows in different paint layers. In addition, our study showed that the different types of chrome yellow can still be identified even in low concentrations. Van Gogh made wide use of different hues of chrome yellow. Using this method, we have identified the types of chrome yellow he used in Field with Irises near Arles, which we have been able to correlate with the information in his letters. Raman spectroscopy of the same samples confirmed the SEM–WDX results, but evidenced a higher sensitivity of the latter technique in revealing small amounts of sulphur-rich PbCr1−xSxO4 in mixtures with PbCrO4. SEM–WDX is also more accurate, because it allows the lead(II) sulphate fraction to be determined within 1 mol% absolute, whereas with Raman spectroscopy only relatively broad ranges can be defined. The on-going research of Van Gogh’s paintings as part of a cataloguing project—a collaboration between the Van Gogh Museum, the Cultural Heritage Agency of the Netherlands and Shell—opens the way for a comprehensive comparison of the chrome yellows used by Van Gogh using SEM–WDX.

Publisher

Springer Science and Business Media LLC

Subject

Archaeology,Archaeology,Conservation

Reference32 articles.

1. Kühn H, Curran M. Chrome yellow and other chromate pigments. In: Feller RL, editor. Artists’ pigments: a handbook of their history and characteristics, vol. 1. London: Cambridge University Press; 1986. p. 187–204.

2. Vauquelin M. Mémoire sur la meilleure méthode pour décomposer le chrômate de fer, obtenir l’oxide de chrôme, préparer l’acide chrômique, et sur quelques combinaisons de ce dernier. Ann Chim. 1809;70:70–94.

3. Otero V, Pinto JV, Carlyle L, Vilarigues M, Cotte M, Melo MJ. Nineteenth century chrome yellow and chrome deep from Winsor & Newton TM. Stud Conserv. 2017;62:123–49.

4. Watson V, Clay HF. The light-fastness of lead chrome pigments. J Oil Colour Chemi Assoc. 1955;38:167–78.

5. Leighton J, Reeve A, Roy A, White R. Vincent van Gogh’s ‘A Cornfield, with Cypresses’. National Gallery Technical Bulletin. 1987;11:42–60.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Irreducible Novelty of Chemistry in Natural History;Perspectives on Science and Christian Faith;2024-03

2. First evidence and characterisation of rare chrome-based colourants used on 19th-century textiles from Myanmar;Dyes and Pigments;2023-10

3. Non-invasive mineral analysis of pigments of wall paintings in the Sungseonjeon Hall;Geosciences Journal;2022-11-17

4. Micro-spectroscopic study of late 19th-early 20th century tube paints;Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;2022-10

5. Microchemical Imaging of Oil Paint Composition and Degradation: State-of-the-Art and Future Prospects;Analytical Chemistry for the Study of Paintings and the Detection of Forgeries;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3