Automatic calibration of crack and flaking diseases in ancient temple murals

Author:

Deng Xiaochao,Yu Ying

Abstract

AbstractMany precious ancient murals are seriously deteriorated due to long-term environmental influences and man-made destructions. How to effectively protect ancient murals and restore these murals’ original appearance has become an urgent problem for field experts. Modern computer technology makes it possible to virtually restore the deteriorated areas in ancient murals. However, most existing mural restoration approaches require manual calibration of the deteriorated areas, which is very difficult and time-consuming. It has been noticed that the earth layer flaking and cracks are the most common problems of ancient temple murals. This paper proposes an automatic calibration method for the earth layer flaking and cracking deterioration of murals by taking temple murals from the Ming Dynasty in Zhilin Temple as the study object. First, we extract the texture and line features of the deteriorated murals by using multi-dimensional gradient detection in the HSV space. Then, a guided filter operation is employed to highlight the disease (deteriorated) areas and meanwhile suppress other unwanted areas, which helps to extract the flaked areas or cracked lines from the digital murals. The filtered images are segmented by using an automatic threshold to obtain the initial masks of the mural disease areas. Next, we use a two-dimensional tensor voting technique to connect the discontinuous edge curves of the extracted disease areas. Afterwards, the masks of flaking and cracking areas can be generated after morphological processing. Finally, we obtained the calibration results by adding the masks to the original digital murals. Experimental results show that our method can rapidly and accurately calibrate the cracks and the earth layer flaking diseases in the ancient murals. As compared to existing calibration approaches, our method can achieve better performance in subjective visual quality and objective evaluation metrics. Moreover, the method does not need human-computer interaction. This research work provides a solid foundation for the following virtual and practical restoration of ancient murals.

Funder

Postgraduate Research and Innovation Foundation of Yunnan University

National Natural Science Foundation of China

Applied Basic Research Project of Yunnan Province

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3