Influences of bulk structure of Calcarenitic rocks on water storage and transfer in order to assess durability and climate change impact.

Author:

Hemeda SayedORCID

Abstract

AbstractThe main purpose of this study is to understand influences of bulk structure of geomaterials on water storage and transfer, in order to assess durability and climate change impact on the UNESCO world heritage sites in Alexandria, Egypt. This study deals with the responses of water towards the physiochemical and physicomechanical behaviours of Calcarenitic rocks, that are utilized in Greek and Roman monuments at Alexandria. Many vulnerable archaeological sites [2.3–2.5 m above mean sea level (M.S.L)] are identified at Alexandria, specifically at the Eastern Harbor, El-Shatby the Greek necropolis and Moustafa Kamil Roman tombs and addition to the Roman Catacombs of Kom El-Shoqafa which excavated with deepth − 18 m from the land surface. These UNESCO heritage sites suffer climate change impact (heavy rains and sea water rising) as well as multiple geoenvironmental and geophysical hazards. In this study a general outline of the various tests, surveys and analyses is presented, highlighting the most important issues related to the durability and climate change impact. This paper represents the comprehensive in-situ, field and laboratory surveys and tests undertaken in these outstanding world heritage sites. The field testing program comprises various geotechnical and geophysical field and laboratory tests aiming to define the physical, mechanical and dynamic properties of the hard soils/soft rock materials of the archaeological sites where these outstanding monuments are excavated and constracted. By analysis of linear correlations, some essential mechanisms should be underlined, which may connect the macrostructure to the microstructure of the geomaterial. A systematic method of analysis clearly appeared and emphasized the role of the bulk structure (i.e. grain size, grain contact, specific area, pore shape and microporosity) on petrophysical and petromechanical behavior of rock materials. The study revealed that the petrophysical and geomechanical properties of Calcarenitic rocks are influenced by size, shape, packing of grains, porosity, cement and matrix content, all controlled strongly by depositional fabric and postdepositional processes. The accurate analysis of the physiochemical and physicomechanical behaviours of Calcarenitic rocks that are utilized in Greek and Roman monuments at Alexandria allowed us to define the pathology of these monuments and to estimate the durability, climate change impact and ultimate geostatic loads that they can survive under their present geoenvironmental conditions.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3