Precise in-situ detection of inorganic pigments in ancient architectural color paintings by HH-XRF

Author:

Zhang Long,Song Ziyan,Zuo Shengda,Hou Feng,Chen Shuaiqing

Abstract

AbstractThe handheld X-ray fluorescence spectrometer (HH-XRF) is commonly used to detect the inorganic elemental composition of pigments on-site. However, the accuracy of in-situ detection results can be affected by the characteristics of the painted surface contaminants and the layered structure of pigments in ancient architectural color paintings. To mitigate this error, a method was proposed that combined the XRF spectra of inorganic pigments with the elemental concentration values obtained through principal component analysis (PCA). Additionally, this study discussed the typical surface contaminants and pigment layering found in color paintings separately. Firstly, experiments were conducted on dust accumulation layers of varying thicknesses. The results indicated that the condition of color paintings after pretreatment of dust accumulation tended to resemble the situation with thin dust accumulation during in-situ testing. A fitting formula was derived to establish a relationship between field testing and laboratory testing results. Secondly, experiments were conducted using various combinations of pigment layers. Based on the findings, it was hypothesized that there was a connection between XRF detection results and the maximum concentration value of a single element (as determined by XRF, in an unmixed or unlayered pigment sample without dust or smoke accumulation). The test results were fitted using a Polynomial formula, providing evidence for the existence of a nonlinear functional relationship between these two variables. Finally, an empirical formula for predicting the concentration values of the top color layer with different base colors was proposed. This study offered a precise method for accurately assessing pigments of ancient architectural color paintings through in-situ testing.

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3