Abstract
AbstractExisting image super-resolution methods have made remarkable advancements in enhancing the visual quality of real-world images. However, when it comes to restoring Chinese paintings, these methods encounter unique challenges. This is primarily due to the difficulty in preserving intricate non-realistic details and capturing comple semantic information with high dimensionality. Moreover, the preservation of the original artwork’s distinct style and subtle artistic nuances further amplifies this complexity. To address these challenges and effectively restore traditional Chinese paintings, we propose a Convolutional Super-Resolution Generative Adversarial Network for Chinese landscape painting super-resolution, termed ConvSRGAN. We employ Enhanced Adaptive Residual Module to delve deeply into multi-scale feature extraction in images, incorporating an Enhanced High-Frequency Retention Module that leverages an Adaptive Deep Convolution Block to capture fine-grained high-frequency details across multiple levels. By combining the Multi-Scale Structural Similarity loss with conventional losses, our ConvSRGAN ensures that the model produces outputs with improved fidelity to the original image’s texture and structure. Experimental validation demonstrates significant qualitative and quantitative results when processing traditional paintings and murals datasets, particularly excelling in high-definition reconstruction tasks for landscape paintings. The reconstruction effect showcases enhanced visual fidelity and liveliness, thus affirming the effectiveness and applicability of our approach in cultural heritage preservation and restoration.
Funder
National Key Research and Development Program of China
Key Research and Development Program of Shaanxi
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi
Northwest University Graduate Innovation Project
Publisher
Springer Science and Business Media LLC