Author:
Kupczak Krzysztof,Warchulski Rafał,Gawęda Aleksandra,Janiec Jan
Abstract
AbstractThe study assessed the uniformity of the metallurgical process carried out during the period of Roman influence in Poland. The age of the investigated material was confirmed based on an analysis of the 12C/14C isotope ratio in the charcoal found in slag. The comparison was based on four Holy Cross Mountains (Poland) locations. The evaluation included smelting temperature, viscosity of the metallurgical melt, oxidation–reduction conditions, and slag cooling rate determined based on geochemical (XRF) and mineralogical (XRD, SEM, EPMA) analyses. Despite the distance between individual sampling sites, the conditions in which smelting was carried out were similar for all samples. The liquidus temperature of the analyzed slags was in the range of 1150–1200 °C. Oxidation–reduction conditions were determined through thermodynamic calculations using SLAG software. In the temperature range of 1150–1200 °C, the oxygen fugacity had to be below logP O2 = − 13.20 to − 12.53 atm to reduce iron oxides to metallic iron. The viscosity of the metallurgical melt was calculated and ranged from 0.15 to 1.02 Pa s, indicating a low viscosity. The slag cooling rate determined based on olivine morphology was in the range of > 5 to 300 °C/h. Smelting parameters were compared with other locations in Poland, and similar results were obtained for slags from Masovia and Tarchlice. In the case of one site (Opole), despite the higher maximum value of liquidus temperature, it was indicated that the process could have taken place in similar conditions, and the differences resulted from contamination of the slag with material from the furnace/pit walls.
Publisher
Springer Science and Business Media LLC