Risk of climate-induced damage in historic parchment

Author:

Krzemień Leszek,Czyżewska Agata,Soboń Magdalena,Kozłowski Roman,Bratasz ŁukaszORCID

Abstract

AbstractMoisture adsorption and related dimensional change were examined in several samples of historic and contemporary parchment. The tensile behaviour was determined for contemporary parchment and two selected historic materials. The moisture-related data for most parchments are close to the contemporary material while aging and past treatments may lower adsorption of moisture and, in consequence, the dimensional change induced by changes in the moisture content. Contemporary parchment exhibited larger water vapour adsorption and moisture-related response compared to most historic materials and, therefore, can be regarded as the worst-case material in terms of the climate-induced risks to parchment. Tensile parameters of parchment varied significantly with increasing relative humidity (RH). Elasticity modulus declined from on average 1200 to 400 MPa and strain at failure doubled when RH increased from 30 to 85%. Parchment’s critical strain at which permanent deformation occurred decreased dramatically with increasing RH reaching zero at 80%. Irreversible curling produced by variations in RH to which flat parchment specimens were subjected were measured by scanning the specimen surface with the use of a laser triangulation sensor. The degree of curling was expressed quantitatively as standard deviation of local curvatures in the parchment sheet. The study opens a perspective of using the relationship between degree of curling and magnitude of RH variations to derive categories of risk to parchment from indoor climate variations, under the condition that quantitative loss of aesthetical/display value of parchment objects resulting from increased curling is agreed. Historical parchment documents generally demonstrating considerable curling engendered by uncontrolled storage conditions in the past are not vulnerable to further distortion when subjected to variations in RH even of considerable magnitude.

Funder

The Polish National Agency for Academic Exchange

The Getty Conservation Institute’s Managing Collection Environments Initiative.

The statutory research fund of the Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences

The Polish National Centre for Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Archaeology,Archaeology,Conservation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3