Author:
Cheng Wang,Lifeng Tan,Xin Qiu,Yiwen Zhang,Guanhua Wang,Zhichao Sun
Abstract
AbstractThe Beijing-Hangzhou Grand Canal, China’s oldest and most crucial water transportation project, ensures smooth operation and efficient water transportation through interconnected water engineering facilities. Studying the connections among the water engineering facilities of the Beijing-Hangzhou Grand Canal is theoretically and practically significant for preserving and innovating canal heritage. Therefore, this study utilizes social network analysis to comprehensively examine the spatial connections and network status of water engineering facilities along the Beijing-Hangzhou Grand Canal across different channel structure. Gephi 0.10.1 was utilized in this study to construct a relational network of water engineering facilities along the Beijing-Hangzhou Grand Canal, with each facility considered as a network node. By applying network analysis indices such as degree, closeness centrality, and betweenness centrality, the correlation between water engineering facilities was thoroughly investigated. The study’s findings reveal that: (1) the Beijing-Hangzhou Grand Canal possesses numerous overall network nodes with extensive coverage; however, its overall network density is relatively low, and the inter-node connection is weak. (2) Across the entire network, the spatial distribution of degree and betweenness centrality exhibits a clustered pattern. Their distribution patterns are centered on the Lake region section where Hongze Lake is located and the segment from Liucheng to Zhenjiang in the Lake region, the River transport confluence section, and the Nature river section, respectively. The spatial distribution characteristics of closeness centrality show a dispersed shape, with stronger areas mainly concentrated in the canal’s tributaries, especially the Nature river section, which shows more prominence. (3) Analyzed from a channel structure perspective, water engineering facilities in different sections assume distinct linking roles within the network. Facilities in the Lake region section play the strongest overall linkage role, partly due to its highest node proportion. Conversely, in the Nature river section, facilities primarily serve transshipment and direct connection functions, whereas in the River transport confluence section, they act mainly as intermediaries or “bridges”. Notably, water control facilities in the Nature river section and river engineering facilities in the River transport confluence section play pivotal driving roles in their respective sections, warranting special attention and protection as critical canal nodes.
Funder
Research on the Protection Strategy of the Hydraulic Heritage of the Tianjin Section of the Beijing-Hangzhou Grand Canal in the Ming and Qing Dynasties
Research on the Composition and Influence Mechanism of Ming Dynasty Coastal Defense Engineering Works System
Publisher
Springer Science and Business Media LLC