Neural network-based classification of X-ray fluorescence spectra of artists’ pigments: an approach leveraging a synthetic dataset created using the fundamental parameters method

Author:

Jones Cerys,Daly Nathan S.,Higgitt Catherine,Rodrigues Miguel R. D.

Abstract

AbstractX-ray fluorescence (XRF) spectroscopy is an analytical technique used to identify chemical elements that has found widespread use in the cultural heritage sector to characterise artists' materials including the pigments in paintings. It generates a spectrum with characteristic emission lines relating to the elements present, which is interpreted by an expert to understand the materials therein. Convolutional neural networks (CNNs) are an effective method for automating such classification tasks—an increasingly important feature as XRF datasets continue to grow in size—but they require large libraries that capture the natural variation of each class for training. As an alternative to having to acquire such a large library of XRF spectra of artists' materials a physical model, the Fundamental Parameters (FP) method, was used to generate a synthetic dataset of XRF spectra representative of pigments typically encountered in Renaissance paintings that could then be used to train a neural network. The synthetic spectra generated—modelled as single layers of individual pigments—had characteristic element lines closely matching those found in real XRF spectra. However, as the method did not incorporate effects from the X-ray source, the synthetic spectra lacked the continuum and Rayleigh and Compton scatter peaks. Nevertheless, the network trained on the synthetic dataset achieved 100% accuracy when tested on synthetic XRF data. Whilst this initial network only attained 55% accuracy when tested on real XRF spectra obtained from reference samples, applying transfer learning using a small quantity of such real XRF spectra increased the accuracy to 96%. Due to these promising results, the network was also tested on select data acquired during macro XRF (MA-XRF) scanning of a painting to challenge the model with noisier spectra Although only tested on spectra from relatively simple paint passages, the results obtained suggest that the FP method can be used to create accurate synthetic XRF spectra of individual artists' pigments, free from X-ray tube effects, on which a classification model could be trained for application to real XRF data and that the method has potential to be extended to deal with more complex paint mixtures and stratigraphies.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3