Analysing domain-specific problem-solving processes within authentic computer-based learning and training environments by using eye-tracking: a scoping review

Author:

Mayer Christian W.ORCID,Rausch Andreas,Seifried Jürgen

Abstract

AbstractRecently, many studies have been published on the use of eye-tracking to analyse complex problem-solving processes within authentic computer-based learning and training environments. This scoping review aims to provide a systematic report of the current state-of-the-art for related papers. Specifically, this work offers a scoping review of studies that analyse problem-solving processes by using eye-tracking (alongside additional process data such as log files, think aloud, facial expression recognition algorithms, or psychophysiological measures) within authentic technology-based learning and training environments for professional and vocational education and training (VET). A total of 12 studies were identified. The most commonly calculated measures in eye-tracking research are position measures, and these are almost exclusively position duration measures such as the proportion of fixation times or total dwell times. Count measures are also mostly related to the number or proportion of fixations and dwells. Movement measures are rarely computed and usually refer to saccade directions or a scan path. Also, latency and distance measures are almost never calculated. Eye-tracking data is most often analysed for group comparisons between experts vs. novices or high vs. low-performing groups by using common statistical methods such as t-test, (M)ANOVA, or non-parametric Mann–Whitney-U. Visual attention patterns in problem-solving are examined with heat map analyses, lag sequential analyses, and clustering. Recently, linear mixed-effects models have been applied to account for between and within-subjects differences. Also, post-hoc performance predictions are being developed for future integration into multimodal learning analytics. In most cases, self-reporting is used as an additional measurement for data triangulation. In addition to eye-tracking, log files and facial expression recognition algorithms are also used. Few studies use shimmer devices to detect electrodermal activity or practice concurrent thinking aloud. Overall, Haider and Frensch’s (1996, 1999) “information reduction hypothesis” is supported by many studies in the sample. High performers showed a higher visual accuracy, and visual attention was more focused on relevant areas, as seen by fewer fixation counts and higher fixation duration. Low performers showed significantly fewer fixation durations or substantially longer fixation durations and less selective visual attention. Performance is related to prior knowledge and differences in cognitive load. Eye-tracking, (in combination with other data sources) may be a valid method for further research on problem-solving processes in computer-based simulations, may help identify different patterns of problem-solving processes between performance groups, and may hold additional potential for individual learning support.

Publisher

Springer Science and Business Media LLC

Subject

Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3