Valorization of hemicellulose waste streams for moisture barrier coatings and hydrophobic films

Author:

Josey Daniel C.,Yadavalli Nataraja S.,Moore Jack C.,Peña Maria J.,Minko Sergiy,Urbanowicz Breeanna R.

Abstract

AbstractReplacing plastics with renewable and environmentally friendly substitutes is becoming ever more critical as we begin to realize the consequences of their negative impacts on the environment. Plant polysaccharides are the most abundant biopolymers on Earth, and hemicelluloses like xylan that are enriched in many agro-industrial waste streams have vast potential as eco-friendly building blocks for polymer science and engineering. However, xylan is one of the less studied natural polymers for applications that are relevant to the synthetic plastics and polymeric materials markets. Hemicellulose isolated from viscose and Lyocell fiber mills is largely seen as a waste product due to difficulties arising from the potential for structural heterogeneity and its lack of solubility after enrichment. In this work, we developed a strategy to valorize hemicellulose by functionalization with octyl isocyanate to achieve solubility and thermoplastic/hydrophobic properties. Xylan isolated from dissolving pulp waste streams was successfully functionalized with octyl isocyanate in DMSO at an estimated 79% hydroxyl conversion. Reaction parameters, including temperature, time, and stoichiometry were optimized for each reaction. The resultant carbamates of xylan oligo- and monosaccharides have good solubility in chloroform and impressive hydrophobic film forming properties yet retain the composability properties desired for renewable materials that are envisioned to enter the circular bioeconomy. Functionalization of xylan with an aliphatic chain through formation of an aliphatic carbamate is not expected to harbor the same toxicity or carcinogenic characteristics as the reactive isocyanate it is derived from, and thus should not inherently restrict these materials for use in diverse packaging applications. These modified physical properties show that xylan from agro-industrial waste streams has considerable potential to replace petroleum-based feedstocks in the existing packaging industry. In the future, we will continue to further develop strategies for valorization of these materials. Graphical Abstract

Funder

Center for Bioenergy Innovation (CBI), U.S. Department of Energy, Office of Science, Biological and Environmental Research Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3