Author:
Bejar Cynthia A.,Goyal Shiwali,Afzal Shoaib,Mangino Massimo,Zhou Ang,van der Most Peter J.,Bao Yanchun,Gupta Vipin,Smart Melissa C.,Walia Gagandeep K.,Verweij Niek,Power Christine,Prabhakaran Dorairaj,Singh Jai Rup,Mehra Narinder K.,Wander Gurpreet S.,Ralhan Sarju,Kinra Sanjay,Kumari Meena,de Borst Martin H.,Hyppönen Elina,Spector Tim D.,Nordestgaard Børge G.,Blackett Piers R.,Sanghera Dharambir K.
Abstract
Abstract
Context
Multiple observational studies have reported an
inverse relationship between 25-hydroxyvitamin
D concentrations (25(OH)D) and type 2 diabetes (T2D). However, the results of
short- and long-term interventional trials concerning the relationship between 25(OH)D and T2D risk have been
inconsistent.
Objectives and methods
To evaluate the causal role of reduced blood
25(OH)D in T2D, here we have performed a bidirectional Mendelian randomization
study using 59,890 individuals (5,862 T2D cases and 54,028 controls) from
European and Asian Indian ancestries. We used six known SNPs, including three
T2D SNPs and three vitamin D pathway SNPs, as a genetic instrument to evaluate
the causality and direction of the association between T2D and circulating
25(OH)D concentration.
Results
Results of the combined meta-analysis of eight
participating studies showed that a composite score of three T2D SNPs would
significantly increase T2D risk by an odds ratio (OR) of 1.24, p = 1.82 × 10–32; Z score 11.86, which, however, had
no significant association with 25(OH)D status (Beta -0.02nmol/L ± SE
0.01nmol/L; p = 0.83; Z score -0.21). Likewise, the genetically
instrumented composite score of 25(OH)D lowering alleles significantly
decreased 25(OH)D concentrations (-2.1nmol/L ± SE 0.1nmol/L,
p = 7.92 × 10–78; Z score -18.68) but was not
associated with increased risk for T2D (OR 1.00, p = 0.12;
Z score 1.54). However, using 25(OH)D synthesis SNP (DHCR7; rs12785878) as an
individual genetic instrument, a per allele reduction of 25(OH)D concentration
(-4.2nmol/L ± SE 0.3nmol/L)
was predicted to increase T2D risk by 5%, p = 0.004;
Z score 2.84. This effect, however, was not seen in other 25(OH)D SNPs (GC
rs2282679, CYP2R1 rs12794714) when used as an individual instrument.
Conclusion
Our new data on this bidirectional Mendelian
randomization study suggests that genetically instrumented T2D risk does not
cause changes in 25(OH)D levels. However, genetically regulated 25(OH)D
deficiency due to vitamin D synthesis gene (DHCR7) may influence the risk of
T2D.
Funder
National Institutes of Health
National Human Genome Research Institute
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献