Abstract
Abstract
Background
Dietary pattern analysis is a promising approach to understanding the complex relationship between diet and health. While many statistical methods exist, the literature predominantly focuses on classical methods such as dietary quality scores, principal component analysis, factor analysis, clustering analysis, and reduced rank regression. There are some emerging methods that have rarely or never been reviewed or discussed adequately.
Methods
This paper presents a landscape review of the existing statistical methods used to derive dietary patterns, especially the finite mixture model, treelet transform, data mining, least absolute shrinkage and selection operator and compositional data analysis, in terms of their underlying concepts, advantages and disadvantages, and available software and packages for implementation.
Results
While all statistical methods for dietary pattern analysis have unique features and serve distinct purposes, emerging methods warrant more attention. However, future research is needed to evaluate these emerging methods’ performance in terms of reproducibility, validity, and ability to predict different outcomes.
Conclusion
Selection of the most appropriate method mainly depends on the research questions. As an evolving subject, there is always scope for deriving dietary patterns through new analytic methodologies.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Cited by
159 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献