The diverse functions of Pseudomonas syringae syringae van Hall effectors in regulating the plant immune response

Author:

Wang Xiang,Yan Fei,Ma Guojing,Li Aixia,Liu LijingORCID

Abstract

AbstractSorghum relies on its immune system to defend against various pathogens, including Pseudomonas syringae syringae van Hall (Pss van Hall). However, the sorghum immune system is largely unknown. Reports on pathogenic effectors have provided valuable insights into the plant immune system; thus, we aimed to identify Pss van Hall effectors that can regulate the sorghum defense response in this study. Here, we first established the sorghum-Pss van Hall pathosystem and found that type III effectors played critical roles in the virulence of Pss van Hall to sorghum. To predict its effectors, the whole genome of Pss van Hall was sequenced, and 18 effector-coding genes were identified. Among them, five effectors belong to the core effectors of Pseudomonas syringae pathovars, and two may be monocot pathogen-specific effectors. Pss van Hall triggered the hypersensitive response (HR) in Nicotiana benthamiana. We found that the effectors of Pss van Hall can be divided into cell death inducers and immune repressors by examining their functions in HR induction and repression of PTI marker gene, ROS production, and pathogen growth. Finally, the roles of core effectors HopAJ2 and HopAN1, and specific effector HopAX1 were further confirmed in the sorghum-Pss van Hall pathosystem. Importantly, the functions of HopAN1 and HopAX1 in regulating plant immunity were reported for the first time. We believe that the identification of these effectors will facilitate the continued exploration of the sorghum immune system.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3