Analysis and simulation of plant disease progress curves in R: introducing the epifitter package

Author:

Alves Kaique S.ORCID,Del Ponte Emerson M.

Abstract

AbstractThe analysis of the disease progress curves (DPCs) is central to understanding plant disease epidemiology. The shape of DPCs can vary significantly and epidemics can be better understood and compared with an appropriate depiction and analysis. This paper introduces epifitter, an open-source tool developed in R for aiding in the simulation and analysis of DPC data. User-level functions were developed and their use is demonstrated to the reader using actual disease progress curve data for facilitating the conduction of several tasks, including (a) simulation of synthetic DPCs using four population dynamics models (exponential, monomolecular, logistic, and Gompertz); (b) calculation of the areas under disease progress curve and stairs; (c) fitting and ranking the four above-mentioned models to single or multiple DPCs; and (d) generation and customization of graphs. The package requires the installation of R in any desktop computer and the scripted analysis can be fully documented, reproduced, and shared. The epifitter R package provides a flexible suite for temporal analysis of epidemics that is useful for both research and teaching purposes.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Physiology

Reference26 articles.

1. Bowen KL. Models of disease progress. In: Stevenson KL, Jeger MJ, editors. Exercises in plant disease epidemiology, 2nd edn. St Paul: The American Phytopathological Society. 2015. p. 9–15. https://doi.org/10.1094/9780890544426.001.

2. Campbell CL, Madden LV. Introduction to plant disease epidemiology. New York: Wiley; 1990.

3. de Mendiburu F, Yaseen M. Agricolae: statistical procedures for agricultural research. 2020. https://CRAN.R-project.org/package=agricolae. Accessed 3 March 2021.

4. Elzhov TV, Mullen KM, Spiess A-N, Bolker B. minpack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. 2016. https://CRAN.R-project.org/package=minpack.lm. Accessed 3 March 2021.

5. Gigot C. epiphy: analysis of plant disease epidemics. 2018. https://CRAN.R-project.org/package=epiphy. Accessed 3 March 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3