An increase in the number of peroxisomes is coupled to the initial infection stage and stress response of Botrytis cinerea

Author:

Han Hongjia,Niu Xuejing,Liang Wenxing,Liu Mengjie

Abstract

AbstractPeroxisomes are very important organelles in eukaryotic cells and participate in various biological processes, including pathogen–host interactions. A variety of proteins involved in peroxisome proliferation and metabolic activity within peroxisomes have been shown to be essential for full virulence of several phytopathogenic fungi. However, the effects of changes in the number of peroxisomes and proteins involved in the peroxisome pathway on the pathogenicity of Botrytis cinerea have rarely been reported. In this study, by analysing transcriptome data and RT-qPCR validation, we found that more than half of the genes annotated to the peroxisome pathway in B. cinerea were upregulated more than twofold between mycelial samples cultured in medium with tomato leaves and without tomato leaves. A strain of B. cinerea with fluorescently labelled peroxisomes was obtained by overexpression of GFP fused to peroxisomal targeting signal 1 (the tripeptide ‘SKL’). The addition of tomato leaves to the liquid medium induced a significant increase in the number of peroxisomes, β-oxidation level, H2O2 content, and acetyl-CoA level in B. cinerea mycelia. When B. cinerea was cultured with oleic acid as the sole carbon source, the formation of infection-related structures and their penetration into plant cells were found to be associated with peroxisome pathway activity. Furthermore, peroxisome proliferation and lipid metabolism increased in response to different extracellular stresses in B. cinerea. Taken together, our results confirmed that activation of the peroxisome pathway in B. cinerea contributes to the initial infection and the ability to cope with environmental stress.

Funder

Natural Science Foundation of Shandong Province

Key Research and Development Program of Shandong Province

Shandong Province “Double-Hundred Talent Plan”

Taishan Scholar Construction Foundation of Shandong Province

Scientific Research Fund for High-Level Talents in Qingdao Agricultural University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3