Identification and characterization of a stem canker and twig dieback disease of pear caused by Neofusicoccum parvum in Chinese mainland

Author:

He FengORCID,Yang Jie,Zhao Yancun,Laborda Pedro,Jia Yifan,Safdar Asma,Kange Alex Machio,Li Bingxin,Zhou Lan,Zeng Quan,Brown Sally,Fu Zheng Qing,Liu Fengquan

Abstract

AbstractPear (Pyrus spp.) is one of the most consumed fruits in China, but the pear production has to confront the growing threat from fatal diseases. In this study, we report two incidences of stem canker and twig dieback disease on pear plants, which led to death of pear seedlings (approximately 10% of total plants) in Guangxi and Jiangsu provinces. Using a combination of morphological and molecular diagnoses, along with pathogenicity test, the causal agent of the disease in these two locations was identified to be the fungus Neofusicoccum parvum. However, the isolates were divided into two clades: CY-2 isolate and other four isolates including ZL-4, BM-9, BM-10 and BM-12 might split into two groups of N. parvum. Two representative isolates (CY-2 and ZL-4) were selected for further investigation. We observed that the optimal temperature for in vitro infection on pear trees of these two isolates was at round 25 °C. Both CY-2 and ZL-4 could infect different sand pear varieties and other horticultural plants in vitro, while CY-2 had a higher virulence on several pear varieties including Nanyue, Lvyun, Qiushui and Ningmenghuang. Furthermore, the efficacy of fungicides against these two isolates was evaluated, and carbendazim and flusilazole were found to be the most effective fungicides in inhibiting the growth of these fungal pathogens. Taken together, these findings redefine the N. parvum species and provide potential strategies for the future management of this disease.

Funder

Agriculture Research System of China

the Anhui Provincial Natural Science Foundation

the Program of Fujian Key Laboratory for Monitoring and Management of Crop Pests

the Major Science and Technology Projects in Anhui Province

National Key R&D program of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3