A G-type lectin receptor-like kinase in Nicotiana benthamiana enhances resistance to the fungal pathogen Sclerotinia sclerotiorum by complexing with CERK1/LYK4

Author:

Pi Lei,Zhang Yifan,Wang Jinghao,Wang Nan,Yin ZhiyuanORCID,Dou Daolong

Abstract

AbstractFungal pathogens are among the main destructive microorganisms for crops and ecosystems worldwide, causing substantial agricultural and economic losses. Plant cell surface-localized lysin motif (LysM)-containing receptor-like kinases (RLKs) or receptor-like proteins (RLPs) enhance plant resistance to fungal pathogens via sensing chitin, which is a conserved component of the fungal cell wall. Other types of RLKs also regulate chitin signaling via distinct mechanisms in plants. In this study, we identified a G-type lectin RLK, NbERK1, which positively regulated chitin signaling and resistance to the fungal pathogen Sclerotinia sclerotiorum in the model plant Nicotiana benthamiana. In addition, the LysM-RLK NbCERK1/NbLYK4 was shown to mediate plant resistance to S. sclerotiorum positively. Further, the association of chitin-induced NbCERK1-NbLYK4 was found to be essential for chitin perception and signaling. Importantly, NbERK1 was associated with NbCERK1/NbLYK4 and positively regulated chitin-induced NbCERK1-NbLYK4 association. Moreover, chitin could induce the dissociation of NbERK1 from the NbCERK1-NbLYK4 complex. Also, the kinase activity of NbERK1 was likely essential for this dissociation and plant resistance-enhancing activity of NbERK1. Together, these results suggest that NbERK1 is a novel component of the chitin receptor complex and enhances plant resistance to fungal pathogens via regulating chitin signaling.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Jiangsu Funding Program for Excellent Postdoctoral Talent

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3