Characterization of the triadimefon resistant Puccinia striiformis f. sp. tritici isolates in China

Author:

Zhou Aihong,Feng Yaoxuan,Gao Xinpei,Liu Yue,Ji Fan,Huang Lili,Kang Zhensheng,Zhan GangmingORCID

Abstract

AbstractWheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease that seriously threatens the production of crops worldwide. Triadimefon is the widely-used fungicide for controlling the disease in China; however, as the fungicide targets a single site (position 401 in the 134th codon of the Cyp51 gene), the extensive application imposes a strong selection pressure on the pathogens, which may potentially lose the effect over time. In this study, 176 Pst field isolates sampled from different regions of Xinjiang were determined for their sensitivity to triadimefon because it is the few frequent Pst outbreak and representative area in China. The results showed that the Pst isolates collected from Yili, Xinjiang, exhibited a strong resistance to triadimefon with an average EC50 of 0.263 µg/mL, despite the rest of the isolates maintaining high sensitivity to triadimefon. The triadimefon-resistant and triadimefon-sensitive isolates did not display significant differences in sporulation, but the triadimefon-resistant isolates exhibited weaker adaptive traits in their latent period and urediniospore germination rate than the triadimefon-sensitive isolates. No cross-resistance was found for the other two fungicides, flubeneteram or pyraclostrobin; however, cross-resistance for the demethylation inhibitor (DMI) fungicides, tebuconazole and hexaconazole, was found. Genome sequencing revealed that the Tyrosine (Y) at 134 residue was mutated to Phenylalanine (F) in the Xinjiang isolates. Our study revealed that a natural mutation in Pst led to the efficacy loss of triadimefon to control the disease.

Funder

National Key Research and Development Program of China

Nature Science Foundation of China

111 Project from the Ministry of Education of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3