The MAP4 kinase NbM4K3 regulates immune responses in Nicotiana benthamiana

Author:

Zhang Shuangxi,Li Haijuan,Zhang Meixiang,An Yuyan

Abstract

AbstractThe mitogen-activated protein kinase kinase kinase kinase (M4K) family is evolutionarily conserved across plants and animals. In Arabidopsis, the protein kinase SIK1, an M4K member, is known to positively modulate reactive oxygen species (ROS) production during pattern-triggered immunity (PTI) by stabilizing BIK1, a key receptor-like cytoplasmic kinase (RLCK). While homologs of SIK1 exhibit conserved protein domain architectures across a range of land plants, their functional conservation remains incompletely understood. This study investigates the functional conservation and divergence of SIK1 homologs, focusing particularly on NbM4K3 in Nicotiana benthamiana. Silencing NbM4K3 resulted in an impairment of the flg22-induced ROS burst and expression of PTI marker genes. Additionally, silencing NbM4K3 led to diminished protein accumulation of RLCKs, while overexpression of the RLCKs prominently enhanced the flg22-induced ROS burst in NbM4K3-silenced plants. Furthermore, NbM4K3-silenced plants exhibited a compromised hypersensitive response (HR), reduced ROS accumulation, and diminished expression of effector-triggered immunity (ETI) marker genes when challenged with the avirulent strains Ralstonia solanacearum GMI1000 and Pseudomonas syringae DC3000, suggesting that NbM4K3 is a positive regulator of ETI. The attenuated HR phenotype observed in NbM4K3-silenced plants upon expression of RipP1 or RipE1, two avirulent type III effectors of GMI1000, further supports the affirmative role of NbM4K3 in ETI. In summary, our data indicate that the M4K NbM4K3 positively regulates both PTI and ETI in N. benthamiana, potentially by stabilizing RLCKs. These findings not only strengthen the role of M4K family in plant immunity but also suggest its potential in improving disease resistance in plants.

Funder

National Natural Science Foundation of China

Technology Innovation Leading Program of Shaanxi

Fundamental Research Funds for the Central Universities

Natural Science Basic Research Program of Shaanxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3