Epidemiological evaluation and identification of the insect vector of soybean stay-green associated virus

Author:

Cheng Ruixiang,Yan Rong,Mei Ruoxin,Wang Yaodi,Niu Wei,Ai Hao,Qiao Sijing,Xu Mengjia,Yu Wei,Ye Wenwu,Wang Yuanchao,Tao Xiaorong,Zhou Xueping,Xu YiORCID

Abstract

AbstractIn recent years, the emergence of soybean stay-green syndrome (SGS), also referred to as ‘zhengqing’, in the Huang-Huai-Hai region of China has resulted in significant yield losses. SGS is a phenomenon characterized by the delayed senescence of soybean, resulting in stay-green leaves, flat pods, and stunted seed development at harvest. We previously identified a distinct geminivirus, named soybean stay-green associated geminivirus (SoSGV), as the causative agent of SGS by fulfilling Koch’s postulates. To further understand the epidemiology of SoSGV, in this study, we collected 368 stay-green samples from 17 regions in 8 provinces including the Huang-Huai-Hai region and surrounding areas. The results showed that 228 samples tested positive for SoSGV (61.96%), and 96.93% of these positive samples showed severe pod deflation. Our epidemiological assessment reveals that SGS caused by the SoSGV is prevalent in the fields, and it is undergoing geographical expansion and genetic differentiation. Additionally, we determined other natural hosts grown in the Huang-Huai-Hai region. By capturing insects in the field and conducting laboratory vector transmission tests, we confirmed that the common brown leafhopper (Orosius orientalis) is the transmission vector of SoSGV. With a better understanding of the transmission and epidemiology of SoSGV, we can develop more effective strategies for managing and mitigating its impact on soybean yields.

Funder

National Key Research and Development Program of China

Open Research Fund from State Key Laboratory for Biology of Plant Diseases and Insect Pests

Jiangsu Agricultural Science and Technology Independent Innovation Fund

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3