Overexpression of wheat spermidine synthase gene enhances wheat resistance to Fusarium head blight

Author:

Ren Jingyi,Li Chengliang,Xiu Qi,Xu Ming,Liu HuiquanORCID

Abstract

AbstractPolyamines, such as putrescine, spermidine, and spermine, are crucial for plant defense against both abiotic and biotic stresses. Putrescine is also known as a significant inducer of deoxynivalenol (DON) production in Fusarium graminearum, the primary causal agent of Fusarium head blight (FHB). However, the impact of other polyamines on DON production and whether modifying polyamine biosynthesis could improve wheat resistance to FHB are currently unknown. In this study, we demonstrate that key precursor components of putrescine synthesis, including arginine, ornithine, and agmatine, can induce DON production, albeit to a lesser extent than putrescine in trichothecene biosynthesis-inducing (TBI) culture under the same total nitrogen conditions. Intriguingly, spermidine and spermine, downstream products of putrescine in the polyamine biosynthesis pathway, do not induce DON production under the same conditions. Additionally, externally applying either spermidine or spermine to wheat heads significantly reduces the diseased spikelet number caused by F. graminearum. Furthermore, our results show that overexpression of the wheat spermidine synthase (SPDS) gene TaSPDS-7D1 significantly enhances the spermidine content and wheat resistance to FHB. In addition, the TaSPDS-7D1-overexpressing line OE3 exhibited a 1000-grain weight and plant height increase compared to the wild type. Our findings reveal that overexpression of the spermidine synthase gene can enhance wheat resistance to FHB without compromising wheat yield.

Funder

National Key R&D Program of China

Chinese Universities Scientific Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3