ABYOLOv4: improved YOLOv4 human object detection based on enhanced multi-scale feature fusion

Author:

Li Rui,Zeng Xin,Yang ShiqiangORCID,Li Qi,Yan An,Li Dexin

Abstract

AbstractThe purpose of human object detection is to obtain the number of people and their position in images, which is one of the core problems in the field of machine vision. However, the high missing detection rate from small- and medium-sized human bodies due to the large variety of human scale in human object detection tasks still influences the performance of human object detection. To solve the above problem, this paper proposed an improved ASPP_BiFPN_YOLOv4 (ABYOLOv4) method to detect human object detection. In detail, Atrous Spatial Pyramid Pooling (ASPP) module was used to replace the original Spatial Pyramid Pooling module to increase the receptive field level of the network and improve the perception ability of multi-scale targets. Then, the original Path Aggregation Network (PANet) multi-scale fusion module was replaced by the self-built bi-layer bidirectional feature pyramid network (Bi-FPN). Meanwhile, a new feature was imported into the proposed model to reuse the mid- and low-level features, which could enhance the ability of the network to express the characteristics of small- and medium-sized targets. Finally, the standard convolution in Bi-FPN was replaced by depth-separable convolution to make the network achieve the balance of accuracy and the number of parameters. To identify the performance of the proposed ABYOLOv4 model, the human object detection experiment is carried out by using the public data set of VOC2007 and VOC2012, the improved YOLOv4 algorithm is 0.5% higher than the original AP algorithm, and the weight file size of the model is reduced by 45.3 M. The experimental results demonstrated that the proposed ABYOLOv4 network has higher accuracy and lower computational cost for human target detection.

Funder

Shaanxi Provincial Department of Education 2022 General Special Research Program Projects

China Postdoctoral Foundation Project

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3