Performance evaluation of lung sounds classification using deep learning under variable parameters

Author:

Wang ZhaopingORCID,Sun Zhiqiang

Abstract

AbstractIt is desired to apply deep learning models (DLMs) to assist physicians in distinguishing abnormal/normal lung sounds as quickly as possible. The performance of DLMs depends on feature-related and model-related parameters heavily. In this paper, the relationship between performance and feature-related parameters of a DLM, i.e., convolutional neural network (CNN) is analyzed through experiments. ICBHI 2017 is selected as the lung sounds dataset. The sensitivity analysis of classification performance of the DLM on three parameters, i.e., the length of lung sounds frame, overlap percentage (OP) of successive frames and feature type, is performed. An augmented and balanced dataset is acquired by the way of white noise addition, time stretching and pitch shifting. The spectrogram and mel frequency cepstrum coefficients of lung sounds are used as features to the CNN, respectively. The results of training and test show that there exists significant difference on performance among various parameter combinations. The parameter OP is performance sensitive. The higher OP, the better performance. It is concluded that for fixed sampling frequency 8 kHz, frame size 128, OP 75% and spectrogram feature is optimum under which the performance is relatively better and no extra computation or storage resources are required.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3